
Towards Optimising Certified Programs
by Proof Rewriting

Kiran Gopinathan
National University of Singapore

gopiandcode.uk

Ilya Sergey
National University of Singapore

ilyasergey.net

Abstract
Wepresent ongoingwork on the use of e-graphs for the trans-
formation of certified programs produced by a deductive
synthesiser for heap-manipulating programs. We develop
a strategy for optimising proofs using the mechanisms of
e-graphs, propose a novel e-class analysis over proof scripts,
and report on its capabilities and limitations.

1 Introduction
The age-old adage goes “the only constant in life is change”,
and nowhere is this more true than with software mainte-
nance. Unfortunately, this is a rather inconvenient fact for
practitioners of formal verification, as the very proofs used
to certify the correctness of a program become the obstacles
that prevent changing their associated programs: in order
to modify such a program, after changing the code, the user
must then also update the proof, effectively doubling the
maintenance effort. In this ongoing work, we investigate the
problem of optimising the source code of certified programs
while preserving their proofs.
Consider the program produced by the SuSLik program

synthesiser [?] to free a list alongside the proof script (i.e., a
sequence of logic rule applications) of its correctness:

// {lseg(𝑥, 𝑆)} listfree(𝑥) {emp}
void listfree(loc x) {

if (x == 0) {
return;

} else {
let h = *x;
let t = *(x + 1);
listfree(t);
free(x);

}
}

Open(x, lseg)
− Emp

− Read(h, x, 0)
Read(t, x, 1)
Call(listfree, t, lseg(t, 𝑆1))
Free(x)
Emp

The program is a fairly straightforward implementation of
a function to recursively free a linked list, following the
specification in ??. It starts by checking whether the input
argument x is null, in which case the list is empty. In the
case that x is not null, the program reads the head of the list,
recurses on the tail, and then finally frees the head itself.
The proof script on the right then describes the deduc-

tive argument SuSLik constructed to produce the program,
closely following the structure of the program. Prior work

EGRAPHS 2022, June 2022, San Diego, CA, USA
2022. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

predicate lseg (loc 𝑥, set 𝑆){
| 𝑥 = 0 ⇒ { 𝑆 = ∅; emp }
| 𝑥 ≠ 0 ⇒ { 𝑆 = {𝑣} ∪ 𝑆1;

[𝑥, 2] ∗ 𝑥 ↦→ 𝑣 ∗ (𝑥 + 1) ↦→ nxt ∗ lseg(𝑛𝑥𝑡, 𝑆1) } }

Figure 1. A Separation Logic predicate for a linked list.

has shown that the proof tree produced during this search
can be extracted into a proof script in the language of the-
orem provers such as Coq to serve as a formally checked
guarantee of the correctness of the synthesised program [?
].

While this program may be correct, the observant reader
may have noted that it contains a subtle inefficiency. In par-
ticular, the function is not stack-safe: the recursive call is
not in a tail-call position, so each recursive invocation of the
functionmust allocate a new frame on the stack. For this par-
ticular case, an experienced C-developer might notice that
the behaviour of the function is not changed if we permute
the last two statements, and manually rewrite the else case
with these two statements swapped. However, now we run
into a problem, in that our proof of correctness no longer
holds for this rewritten program. Is there a way to change the
program while maintaining its proofs?

2 E-Graphs Over Proofs
One way to support these kinds of optimisations of gener-
ated programs, while preserving their proofs of correctness,
is to directly optimise the proofs themselves, and then later
re-extract the optimised programs from the modified proofs.
While transforming proofs rather than programs are a rela-
tively novel domain for optimisations, they give rise to the
same challenges that one might face during program trans-
formations such as the phase ordering problem. As such, we
choose to leverage the mechanisms of equivalence graphs
for this task, and perform our proof optimisations by means
of encoding them as rewrite rules for an e-graph.
Following the running example of the list free function

presented above, we can apply this methodology by trans-
forming the proof such that the Call and Free rules are
permuted, using the following rewrite rule for proof scripts:

Call(?𝑓 , ?𝐻);
Free(?𝑥);
...

⇒
Free(?𝑥);
Call(?𝑓 , ?𝐻);
...

1

EGRAPHS 2022, June 2022, San Diego, CA, USA Kiran Gopinathan and Ilya Sergey

Open(x,lseg)

Read(h,x,0)

Read(t,x,0)

Call(...)

Free(x)

Emp

Open(x,lseg)

Read(h,x,0)

Read(t,x,0)

Call(...)

Free(x)

Free(x)

Call(...)

Emp

Figure 2. E-graphs for proof script rewriting.

Notice that while such a transformation might not be valid in
general, we can ensure its soundness by making the rewrite
conditional on the fact that the quantified variable ?𝑥 does
not syntactically occur in the heaplets framed in to the func-
tion call, which are helpfully included as the second argu-
ment to the Call proof rule. That is, it is safe to transpose a
call and a free, provided that the call does not use any of the
data that will be deallocated by the free. As we are operat-
ing over the proof script itself rather than the raw program,
we are able to encode this semantic constraint about the
behaviour of the program through a purely syntactic check.

Applying the above conditional rewrite rule to an e-graph
embedding the list-free proof, we obtain the equivalence
classes presented on the ??. Notice that after applying the
transformation, the e-graph has merged the roots of both
subtrees for this proof into a single equivalence class that
encodes the fact that multiple proof trees may dispatch the
same proof obligation. Finally, in order to recover the op-
timised certified program, we extract a concrete proof tree
from the e-graph, tuning the extraction heuristics to priori-
tise programswith nice properties (such as tail call recursion),
and then use SuSLik to extract the corresponding program
from the proof tree using its proof interpreter [?].

3 Towards an E-Class Analysis for Proofs
As we have shown, the more explicit nature of proof scripts
makes it possible to encode deeper semantic constraints by
means of simple syntactic checks, however, this comes with
its own drawbacks. For example, to encode the commutativity
of any two proof rules, as we are reasoning purely syntacti-
cally, we must manually develop a bespoke syntactic check
each time to enforce the soundness of the transformation,
requiring 𝑂 (𝑛2) unique rewrite rules to support all possible
proof rules.1 Clearly reasoning in this way can quickly be-
come impractical as the number of proof rules increases, let
alone supporting more diverse types of transformations.

To alleviate this problem, we can move part of our reason-
ing from the purely syntactic to the semantic. To do so, we
propose a novel e-class-based analysis to reason about proof

1For reference, SuSLik has 19 proof rules in total, necessitating 361 bespoke
rewrite rules to support just commutativity alone.

trees, building on the e-class analysis framework for e-graphs
described in the paper introducing the egg library [?].

For each equivalence class in the e-graph, we associate an
abstract proof footprint that encodes a representation of the
set of concrete proof goals that any subtree in the class can
safely dispatch. Concretely, a proof footprint has the same
structure as a SuSLik synthesis goal as before, but also in-
cludes a catch-all wildcard expression, to encode the fact that
proof trees may be agnostic to the value of particular terms.
This proof footprint is then built up in a bottom-up fashion,
starting from the leaves of the proof tree, working upwards
by defining a footprint-transformer for each proof rule that
“reverses” the operation of the rule to capture the increasing
complexity of proof goals that the extended subtrees can
handle. As an example, the footprint transformer for a Free
rule would modify a footprint by adding the freed blocks
back into the pre-condition, using wildcards to represent the
unknown contents of the block.

With this e-class analysis in hand, we can then modify our
rewrite rules to use the footprints of the subtrees that they
manipulate, and thereby simplify their implementation. For
example, in the case of commutativity, we can say that any
two proof rules at the root of a given proof tree can commute
if the footprints of the resulting proof trees are equal up to
wildcards. This way, we cut down the implementation cost of
defining rewrite rules for commutativity from 𝑂 (𝑛2) down
to simply the cost of writing 𝑂 (𝑛) proof transformers for
each proof rule, with the added benefit that the abstract
footprints may then be used to enable and guide further
proof rewritings.

4 Limitations and Future Work
We have implemented our initial experiments on this pro-
posed strategy for optimising certified programs in theOCaml
programming language, as part of which, we have developed
and published a free software library ego for encoding e-
graphs.2 Over the course of our implementation, we have
identified the following unsolved challenges with this ap-
proach, which we hope to investigate further in future work:
• Efficient encoding of reverse-substitutions:many SuS-
Lik proof rules involve substitution as part of their defini-
tion which is a problem when “reversing” them, as they
end up introducing significant non-determinism, which is
difficult to capture efficiently.

• Validating footprint transformers: footprint transform-
ers themselves are rather cumbersome to implement, as
they require running the expected behaviours of a rule in
reverse, which can be easy to implement incorrectly.

• General utility of proof footprints: so far, we have only
considered the use of proof footprints for the purposes
of simplifying our commutativity rewrite rules, so the

2Available at https://github.com/verse-lab/ego

2

https://github.com/verse-lab/ego

Towards Optimising Certified Programs by Proof Rewriting EGRAPHS 2022, June 2022, San Diego, CA, USA

question of whether these abstract footprints are useful in
a more general setting remains unanswered.

3

