
GopCaml: A Structural Editor for OCaml

Abstract
This talk presents GopCaml-mode, the first structural editing
plugin for OCaml. We will give a tour of the main plugin
features, discussing the plugin’s internal design and its inte-
gration with existing OCaml and GNU Emacs toolchains.
ACM Reference Format:
. 2021. GopCaml: A Structural Editor for OCaml. In Proceedings of
ACM Conference (Conference’17).ACM, New York, NY, USA, 3 pages.

1 Introduction
Language-aware editor support can vastly improve the over-
all user experience of a programming language. In this talk,
we focus on the task of providing syntactic editor support for
OCaml, presenting GopCaml-mode, a plugin for GNU Emacs,
that extends Emacs with support for syntax-directed editing
operations. As it turns out, the particular style of OCaml syn-
tax produces unique challenges for capturing the structure
of programs within the interfaces of standard editors.

Consider the task of providing structural editing support
for GNU Emacs, one of the most popular editors within the
OCaml community [1]. The base interface of Emacs revolves
around a user interacting with a file by expressing operations
in terms of character-based transformations of text (i.e. insert
character at cursor). Plugins then provide additional opera-
tions to allow a user to express syntax-based transformations
of text in terms of these lexical operations, i.e. delete expres-
sion at cursor delimited by braces, swap statements at cursor
separated by semicolons. In the case of OCaml, this approach
falls short, as OCaml’s syntax means that the structure of
OCaml programs can not consistently be approximated from
a lexical analysis alone — what denotes the start and end of
a given expression?

While OCaml has a rich tooling ecosystem, existing plug-
ins do not adequately provide support for structural editing.
Tuareg, Vim-OCaml and VS-code-OCaml-platform, are the
main plugins that provide OCaml-specific language support
for the popular editors, GNU Emacs, Vim and VS-Code re-
spectively. While all three plugins provide basic structural
editing support, these functionalities are implemented us-
ing basic lexical analysis alone, and so, by design, are not
intended to provide a fully accurate encoding of OCaml
syntax, which results in their inability to support common
OCaml code transformations, such as swapping branches of
a match-statement. The Merlin [2] language server extends
an editor to provide additional semantic integration with the
language, but does not focus on lower-level syntactic editing
Conference’17, July 2017, Washington, DC, USA
2021. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

support. More recently, the Rotor [4–6] tool is a framework
designed for refactoring OCaml projects, however its focus
is on large-scale whole program transformations rather than
local syntactic transformations as needed for structural edit-
ing.

2 A tour of GopCaml
In this section, we highlight a selection of structural editing
operations on OCaml mode that GopCaml-mode supports.

Consider the following snippet of code, where the position
of the user’s cursor is denoted by the hollow caret block:
let rec map f xs = match xs with

| [] -> []
| x :: xs -> f x :: map f xs

Now, with this code in hand, what can GopCaml-mode do?

Structural Navigation. One useful operation when edit-
ing code is to move the cursor relative to the structure
of the program, i.e. move to the start of the match state-
ment enclosing the cursor. GopCaml-mode explicitly sup-
ports such movements — in this case, through a function
structural-up, which uses the concrete syntax tree (CST)
for the current program to reposition the cursor accordingly:
let rec map f xs = match xs with

| [] -> []
| x :: xs -> f x :: map f xs

Structural Transposition. Another useful way in which
syntactic information can be of use for editing is through
structural transformations, such as swapping the nearest
syntactic constructs by the cursor. Again, GopCaml-mode
supports such operations — in this case, through a func-
tion structural-transpose, which uses the concrete syn-
tax tree for the current program to modify the program text
as follows:
let rec map f xs = match xs with

| x :: xs -> f x :: map f xs
| [] -> []

Structural Deletion. As a final example, consider the
task of deleting entire nodes from the syntax tree, i.e. delete
the branch at the cursor. GopCaml-mode supports this trans-
formation through a function structural-delete, which
again relies on the concrete syntax tree for the current pro-
gram to remove the nearest syntax construct to the cursor,
leaving the buffer as follows:
let rec map f xs = match xs with

| x :: xs -> f x :: map f xs

Conference’17, July 2017, Washington, DC, USA

Other operations supported by GopCaml-mode include:

• Structural selection - select regions using the CST.
• Structural syntax-move - move nodes around the CST.
• Extract expression - extract a common sub-expression
to a let binding.

• Jump to binding/parameter - move the cursor to the
nearest let binding/parameter.

3 Under the hood
We now present the core logic used by GopCaml-mode to
provide structural editing — a variant of Huet’s zipper [3],
specialised for navigating syntax trees. A syntax tree might
provide the information needed for structural editing, but it
is fundamentally unsuited for use in an interactive setting
where the tree traversal is iterative, typically being controlled
by the user. The definition of the zipper used in GopCaml-
mode is as follows:

type zipper =
| Top
| Node of {

item: t; below: t list; above: t list;
parent: zipper;
bounds: text_region;

}

An instance of this zipper encodes a path from the root of the
program CST (i.e. Top) to a currently focused node (item),
retaining the structure of the whole tree by tracking the
siblings below and above each node.

The main modification made to Huet’s original definition
is to extend each intermediate node with an additional field
that captures the “bounds” of the current node — the char-
acter range in the original buffer from the start to the end
of the current node. This change enables a simple interface
between the core logic and the user’s editor — that of simple
text ranges, as will be discussed later in this section.

Finally, the type t captures a thinwrapper aroundOCaml’s
underlying AST type:

type t =
| Sequence of

text_region option * t list * t * t list
| Signature_item of Parsetree.signature_item
(* ... *)

The full data type has a constructor for each node in the
OCaml AST, along with an additional Sequence constructor
which provides a generic encoding of the “minimal” informa-
tion needed to represent an syntactic node — this happens to
be particularly useful for handling intermediate operations
that produce invalid syntax trees.

As it turns out, using a zipper to track the user’s position
in the syntax tree allows for a rather simple and elegant
implementation of the structural operations we saw earlier:

• Structural movement - With this framework, syntax-
based movement simply boils down to moving the zip-
per itself and then updating the position of the editor’s
cursor to reflect the change in the focus of the zipper.
For example, in order to move the cursor to the enclos-
ing match osition expression as before, the plugin first
moves the zipper up the syntax tree by replacing it with
the value of its parent and then simply updates the edi-
tor’s cursor to move to the start of the newly focused
element.

• Structural transposition - Syntax-based transforma-
tions also neatly fit into this framework. For example, in
order to transpose the match branches from before, the
plugin first retrieves the two nodes to be changed as the
focused element of the zipper and its next sibling (from
the item and above fields respectively). After swapping
them in the zipper, to perform this transformation on
the program text itself, the plugin passes the text ranges
corresponding to the swapped elements to the editor,
which then simultaneously swaps the corresponding
characters.

• Structural deletion - Structural deletion requires more
care, but still works quite cleanly with zippers. In order
to delete an element in the zipper, the plugin need only
remove the currently focused item and replace it with
its next sibling, and similarly ask the editor to delete
the text region corresponding to the removed element.
Finally, to account for the removed characters from
the text buffer, the zipper must update the text bounds
for all subsequent and parent nodes accordingly — by
shifting or shrinking them respectively.

4 Editor integration and Future Work
We have implemented the above zipper-based structural edit-
ing framework as a small OCaml library, using the OCaml
compiler infrastructure to provide the AST definitions and
parser. The GopCaml-mode Emacs plugin builds on this
core framework to integrate it with GNU Emacs, provid-
ing functions to persist and cache the state of the zipper over
an editing session and keybindings to run structural opera-
tions using the zipper. For example, when the user presses a
keybinding for a structural operation, GopCaml-mode then
transparently handles the tasks of building the CST, con-
structing a zipper at the cursor and performing the editing
operation on the zipper and text buffer.
In the future, we plan to extend support to other editors.

The core editing framework is agnostic to the particular
choice of editor, simply implementing edits in terms of zipper
transformations as above, so it would not be too challeng-
ing to integrate this into editors such as Vim and VS-code.
Finally, looking further out, we hope to extend this frame-
work further, moving from the syntactic to the semantic - for
instance, using typing information to guide transformations.

GopCaml: A Structural Editor for OCaml Conference’17, July 2017, Washington, DC, USA

References
[1] 2020. OCaml User Survey 2020. https://docs.google.com/

forms/d/1OZV7WCprDnouU-rIEuw-1lDTeXrH_naVlJ77ziXQJfg/
viewanalytics [Online; accessed 19. May 2021].

[2] Frédéric Bour, Thomas Refis, and Gabriel Scherer. 2018. Merlin: a
language server for OCaml (experience report). Proceedings of the ACM
on Programming Languages 2, ICFP (2018), 1–15.

[3] Gérard Huet. 1997. The zipper. Journal of functional programming 7, 5
(1997), 549–554.

[4] Reuben NS Rowe, Hugo Férée, Simon J Thompson, and Scott Owens.
2019. Rotor: a tool for renaming values in OCaml’s module system. In
2019 IEEE/ACM 3rd International Workshop on Refactoring (IWoR). IEEE,
27–30.

[5] Reuben NS Rowe and Simon J Thompson. 2017. Rotor: First steps
towards a refactoring tool for OCaml. In OCaml Users and Developers
Workshop 2017.

[6] Reuben NS Rowe and Simon J Thompson. 2018. Towards Large-scale
Refactoring for OCaml. Proceedings of the ACM on Programming Lan-
guages 1, 1 (2018).

https://docs.google.com/forms/d/1OZV7WCprDnouU-rIEuw-1lDTeXrH_naVlJ77ziXQJfg/viewanalytics
https://docs.google.com/forms/d/1OZV7WCprDnouU-rIEuw-1lDTeXrH_naVlJ77ziXQJfg/viewanalytics
https://docs.google.com/forms/d/1OZV7WCprDnouU-rIEuw-1lDTeXrH_naVlJ77ziXQJfg/viewanalytics

	Abstract
	1 Introduction
	2 A tour of GopCaml
	3 Under the hood
	4 Editor integration and Future Work
	References

