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The need for trust in modern software has never been greater. Programs are being written and evolving
at an unprecedented rates; modern systems are plagued by bugs with increasing frequency and substantially
more severe consequences. Even as recent as a year ago, buggy patches to the CrowdStrike monitoring
service lead to crashes and widespread outages at global scales, ultimately resulting in an estimated $10 billion
worth of economic damages and untold human costs. With the increasing popularity of LLMs and adoption of
ML-generated code, soon it may be the case that not even developers know what their programs do, painting a
bleak picture of the future: the onslaught of bugs is only set to continue and worsen in severity.

Formal verification has long been developed as the solution to this problem, providing the strongest guaran-
tees of software correctness that humanity is able to produce, and developments over the years have succeeded
in bringing it to the cusp of mainstream adoption. In the past decade alone, the field has seen a substantial
paradigm shift, as techniques and frameworks have matured to the point where it is now possible to verify
practical real-world software: compilers, file systems, distributed programs, cryptography libraries and even
whole operating systems. Most recently, the HACL verification effort has seen formally verified cryptography
code deployed to popular web browsers (Firefox, Chrome, etc.), forming a crucial part of securing the daily
browsing of billions of users. Sadly, in this shift from theory to practice, researchers are slowly uncovering and
coming to face a more pernicious problem: that of how to maintain these verified software systems.

Code evolves; proofs do not. The fundamental problem facing existing verification is that it treats the
systems to be verified as static artefacts: large scale verification efforts fix particular versions of the systems
they target and rarely consider updates; any such changes often incur extensive manual effort to repair and
major restructurings of respective proofs. In practice, many landmark verified systems are simply unmaintained,
for example: FSCQ, a crash-safe verified file-system (339 citations), last updated 3 years ago 2; Verdi, a
formalisation of the Raft distributed protocol (449 citations), last updated 2 years ago 2; JSCert, a verified
ECMAScript reference interpreter (176 citations), last updated 10 years ago 2. The sad state of affairs for many
real verified systems in practice is that their artefacts are often simply left to stagnate and fall into disrepair.

The past several decades of research have shown that formal verification can indeed scale to real code,
but if verified software is to ever see wider adoption, it is vital that we solve this pervasive problem of proof
maintenance. In my PhD work, I pioneered forward-looking research into this very problem, developing
the first state of the art automated techniques for the maintenance of verified software systems.

My PhD thesis [3] proposed a general framework for handling evolution of verified systems, substantiating it
over several case studies of maintaining real-world software. In my work, I built on the observation that verified
software maintenance typically falls under one of a few categories. That is, maintenance often arises due to
either (1) handling changes in specifications or data structures in response to shifting business requirements
or (2) handling changes in implementations for performance. To handle the first case, I co-authored a tool,
certisuslik [9], that could automatically synthesise certified C programs from specifications, removing the need
for users to maintain implementations at all. Follow up work found that the certisuslik programs, despite being
synthesised, had comparable performance to binaries from production compilers (GHC). For the second case,
I developed a tool, sisyphus [7], for repairing proofs of verified OCaml programs. The tool was evaluated on
a number of real OCaml programs and their changes from version control, including several functions from
JaneStreet’s core library, and found to drastically reduce manual maintenance efforts from hours to minutes.
Following my PhD, I broadened the scope of my research to consider more general (3) non-functional issues
related to verification tools themselves, such as verification times or handling version changes. As part of this, I
introduced a novel proof maintenance optimisation, dubbed proof-localisation, intended to reduce verification
times. I implemented this in a tool, axolocl [2], which was able to reduce re-verification times of long running
queries by up to 1000x in several real-world verified code bases, including in AWS’ cryptography libraries.

The key insight across my research is in exploiting the latent information that is present but overlooked
when working in a formally verified setting. While the challenge of maintenance and repair in software has
traditionally been in inferring developer intent, the main observation that drives my work is that in formal
developments, much of this information is available within verification artefacts: proof terms, SMT traces,
synthesis trees. As formal verification has become more practical and verified systems have proliferated, mature
and established formal artefacts are emerging for the first time, exposing the potential for an entire new field
of research into how to maintain these systems. My research vision combines techniques from formal
verification, programming languages and program repair to tackle the problem of proof maintenance.

Currently, verification carries a heavy opportunity cost. Not only does verification require developers to
write specifications and proofs of their programs, but it then also effectively doubles the maintenance burden,
requiring subsequent changes to update both code as well as proofs. The long term vision of my research is
to reduce the costs of formal verification and radically shift this paradigm: verification should not be a
burden — as my research shows, verified code has the potential to both be easier to write and maintain than
unverified software — and my broader research goals are to bring this vision to reality.
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Research Projects & Future Work
The following section presents a high level overview of my current research work and future research plans. I
break the problem of proof maintenance into three main axes in which verified systems can evolve, and present
key work I have done into tackling changes of each class: changes in implementations, changes in specifications,
and finally, non-functional changes, such as slow verification times or migrating artefacts across tool versions.

Axis 1: Proof Maintenance of Implementations

One of the most common forms of evolution in real world software is changes in implementations, especially so
in software exposing libraries and APIs for other downstream clients. In practice, library developers frequently
refactor implementations of a library to improve performance or code quality while preserving the public API
and specifications to ensure backwards compatibility. Given the ubiquity of these changes in unverified software,
exploring this problem in verified systems is a natural place to start investigating automated proof maintenance.

The key problem of proof maintenance of implementations is the fundamental difficulty of verification:
proving an arbitrary updated implementation satisfies a specification is in general an undecidable problem. For
practical and scalable maintenance of verified implementations, tools must be developed that somehow leverage
the unique information present in a repair setting: the latent information within the old program and proofs.
Intuitively, developers find it easier to modify and refine a working program than to write one from scratch; the
same should hold for verified systems: it should be easier to fix a broken proof of a verified program than to
verify it from scratch, but sadly no prior work had succeeded in extracting and making use of this information.

This problem was the main focus of one of the projects of my PhD research. I developed a tool, sisyphus, to
provide automated repair of verified OCaml programs over changes in their implementations [7]. Combining
ideas from dependent type theory and program logics, I developed a novel technique based on the Curry-Howard
Correspondence, dubbed proof-driven testing, that allowed efficiently repairing proofs when implementations
changed. The core insight was that repair of verified OCaml programs could be framed as an invariant inference
problem, i.e. inferring an invariant to verify the new implementation, and by analysing the proof terms provided
by the proof assistant, it was possible to extract executable testing functions that could be used to quickly
validate candidate invariants and thereby scale up the repair process to real-world programs. I evaluated
sisyphus on a corpus of real-world OCaml code and its changes taken from the version control of popular OCaml
libraries, including widely-used industrial code bases such as JaneStreet’s core or the venerable containers

library. Overall, sisyphus was able to reduce the maintenance burden of real-world code from hours to minutes.
The contributions of this work were awarded a SIGPLAN Distinguished Paper Award at PLDI’23.

The first axis of my planned research will be to tackle proof maintenance of implementations, with
the focus of developing novel approaches to reuse information in the repair process. The old adage
goes “a complex system that works is invariably found to have evolved from a simple system that worked”1.
Changing a program is easier than writing it from scratch. Repairing a broken verified system should be easier
than verifying it from scratch, however this is currently beyond the state of the art verification techniques, and
the goal of my research in this direction is to broach that gap. The next steps in this direction will be to extend
my techniques of proof maintenance of implementations beyond the context of sequential OCaml programs to
languages with more complex semantics, such as concurrent, distributed or probabilistic programs.

Axis 2: Proof Maintenance of Specifications

Another major form of evolution in real-world software is found through changes in specifications, typically
brought about as the business requirements and design goals for a system naturally shift over its lifetime.
Evolution of this form typically involves far more substantial changes across a program, including major
restructurings and changes in algorithms, so reuse of old code, and therefore old proofs, is often not possible. In
this case, the best we can hope for in maintenance is automatically synthesising code to satisfy new specifications.

As another project in my PhD, I developed tooling to tackle proof maintenance in this setting. I co-authored a
tool certisuslik to automatically generate verified efficient C programs given only a user provided specification
of the desired behaviour [9]. The tool was developed by extending an existing deductive synthesis tool, suslik,
with a lightweight modification to produce certificates of any generated code. The key insight in this work
was that the internal search trees that synthesis tools construct actually contain exactly the necessary latent
information to verify any programs they generate, and designing a general algorithm to translate synthesis trees
to verification proofs. My main contribution in this work was to extend the initial algorithm, which targeted
programs in non-executable toy languages, to a real-world setting, extending the tool to produce executable
certified C code, and bridging the gap from the synthesizer’s simple internal logic to a production verification
framework sufficient to certify practical programs. Follow up work by subsequent researchers2 were able to
use the tooling I developed to use certisuslik to generate efficient list and tree data structure manipulating

1John Gall (1975) Systemantics: How Systems Really Work and How They Fail p. 71
2Higher-Order Specifications for Deductive Synthesis of Programs with Pointers. David Young, Ziyi Yang, Ilya Sergey, Alex Potanin.
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programs, which benchmarked competitively to battle-hardened production compilers such as the Glasgow
Haskell Compiler (GHC), demonstrating the efficacy of this methodology for real-world proof maintenance.

The second axis of my future research is to tackle proof maintenance over changes in specifications,
utilising latent information present within existing program synthesisers to certify their outputs.
While program synthesis has been extensively studied, the question of generating certified code as usable for
proof maintenance is relatively nascent, and my goal in this direction is to extend the insights from this work to
other existing synthesis approaches. My next steps in this direction will be to investigate developing certifying
versions of other synthesis strategies beyond deductive synthesis, such as CEGAR or LLM-based synthesis tools.

Axis 3: Non-Functional Proof Maintenance

Looking beyond traditional problems of software maintenance, more recently, proof engineers have started to
run into new unseen problems unique to large verified developments. For example, as verified systems have
grown in size, there has been increasing reports of developers running into issues with slowdowns or instability
in verification times when using SMT solvers or proof automation. Similarly, changes in the verification tool itself
often require extensive maintenance patches and updates spanning entire code-bases. Broadly, this class of
problems can be thought of maintenance tasks that are non-functional in nature — the functionality remains the
same, but patches are required for the system to remain usable — and sadly, given that systems large enough to
encounter these issues have only recently emerged, research into this remains in a nascent state.

Following my PhD, I broadened the scope of my research to include these novel problems, and lead a project
tackling one particular form non-functional maintenance: reducing slow re-verification times in program verifiers.
As verified programs grow in size, the size of their verification queries and therefore verification times grows
which can substantially hamper the maintainability of the system, as developers must wait increasingly long
times to get feedback after each change. As part of this work, I developed a tool axolocl which implements a
novel optimisation, dubbed proof localisation, for reusing information from the proof search across multiple
verification runs, and thereby substantially reducing verification times when re-verifying a program [2]. The
key insight in this work was utilise internal debugging output of the SMT solver to extract latent information
about the proof search in an initial verification, such as UNSAT cores and axiom instantiations, and develop a
light-weight encoding to store this information to reuse in subsequent verification attempts. In this process, I
discovered a novel class of information, dubbed lurking axioms, which are required to reproduce SMT results,
but are not logically relevant in the proof, and thus entirely absent from traditional SMT outputs. I implemented
this technique as an extension to the Boogie Program Verifier, and evaluated the tool across a number of
real-world production verified systems and found significant speedups for long-running files of up to 1000 times.

The third axis of my planned research vision is to look beyond the traditional forms of software
evolution, and tackle the emerging non-functional maintenance tasks that uniquely arise in this
setting. My next steps in this research direction are to characterise and investigate other forms of this class of
this maintenance: automating evolving verified systems of changes in verifier versions, and tackling the problem
of proof instability, where automated proofs become “flakey” and have high variance in their verification times.

Future Work

My current work captures broad swathes of the problem area of proof maintenance, though there are several
open questions that still remain unaddressed. Below I list key problems that I intend to explore in future works.

Proof Stability in Automated Verifiers My prior work, axolocl [2], tackles the problem of reducing verifi-
cation times of long-running proofs in automated verifiers but does not directly address proof instability. An
increasingly common phenomenon observed in larger verified systems is of queries that have high variance in
verification times, with small irrelevant changes to programs resulting in incommensurate changes in verification
times. As follow up work, I plan to develop tools to tackle this problem, investigating whether the key ideas from
proof-localisation can be extended and enhanced to also also improve the stability of verification queries.

Proof Maintenance beyond Sequential Code While my work has substantially developed the state of the art
of proof maintenance, the field as a whole is still largely in its nascence, and all prior works in the direction,
including my own, have focused purely on maintenance of sequential programs. As future work, I plan to extend
also tackle proof maintenance when applied to programs in languages with more complex semantics, such as:

1. Randomised Algorithms - Early in my PhD, I developed a large-scale verified proof of a class of complex
probabilistic data structures known as approximate membership query structures, a class which includes
the widely-used Bloom filter data structure, and provided the first formally verified proof of the false
positive rate [10]. While the development was carefully organised, the entangled nature of reasoning
used for randomised programs meant that the overall development was still brittle, and has become
unmaintained over time. Building on my experience in this domain, I plan to investigate how proof
maintenance techniques can be adjusted to handle the kinds of proofs found in randomised algorithms.
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2. Distributed Systems - I have previously worked on formal verification of distributed protocols, in
particular, developing an initial partial formalisation of the safety properties of the Nakamoto consensus
protocol in the Rocq theorem prover [11]. In a similar style to randomised algorithms, safety and liveness
properties of these distributed algorithms tend to be deeply entangled and whole-system properties, which
makes modular and robust verification challenging. As future work, I plan to investigate developing proof
maintenance techniques for maintaining proofs of verified protocols, focusing both on proofs in interactive
proof assistants such as Rocq or Lean as well as automated tools such as Ivy.

Proof Maintenance in Unverified Programming Languages As type systems have become more complex
and type checking has grown closer to verification, there is a growing opportunity to extend techniques from
proof maintenance from verified systems back to unverified code. In particular, can formal artefacts of type
checking in languages with non-trivial static analyses, such as Rust and its borrow checker, be used to automate
the process of maintaining programs in these languages as they evolve? I have previously investigated developing
tooling to provide traditional editing operations such as refactoring in Rust where maintaining type-correctness
over such transformations is non-trivial [8]. As future work in this direction, I plan to investigate how the insights
from my proof maintenance work can be applied to maintaining Rust programs, and how the latent information
stored by Rust’s type and borrow checker can be exploited to automatically repair Rust programs.

Proof Repair for Meta-Programming Another area in which techniques from proof maintenance could
be applied more broadly is in the maintenance of macro-based meta-programs. Meta-programming facilities
in a language allow users to change and extend a programming language to embed custom domain specific
languages and tune the language to their problem domain. I have previously worked on studying the use of
macro-systems in practice across the Racket Programming Language ecosystem [4]; a common problem in found
by meta-programming users is in maintaining these macro-based DSLs: in particular in how DSL designers can
maintain their DSL-based programs as the DSL itself updates and evolves. As future work, I plan to investigate
how techniques from proof maintenance can be applied in meta-programming based DSLs, and how latent
information stored by the compiler can again be used to automate repairing such programs.

Beyond Maintenance to Verification Guided Optimisation Currently, when verifying a program, beyond
ensuring its correctness, verification does not provide any further benefits to the end user, but does it have to be
this way? As my research has shown, the information stored in proof artefacts can capture insights about the
intents a developer had in mind when writing a piece of code and it seems within reason that this information
could even be used to optimise programs themselves. One area where this information would be particularly
useful is concurrent programming, where correctness of code often depends on larger whole-system properties.
Previously, I have worked in this domain, developing a library to simplify the construction of concurrent data
structures through a technique known as batching, where multiple concurrent requests grouped and processed
together in a batch [5]. As future work, I plan to investigate how the information in formally verified code might
be used to automatically optimise it into a more efficient concurrent implementation, potentially using batching.

Language Design for Proof Maintenance In the long term, looking beyond immediate approaches of
responsive solutions to proof maintenance, i.e. fixing proofs when they break, it is important to also consider
preventative approaches to proof maintenance: how verification languages themselves can be designed to
make them robust and resistant to change. In prior work, I have worked on a number projects on language
design, helping to design the Rhombus programming language [6] and build tools for synthesising programming
languages to describe potential attack surfaces [1], and over the course of my research career have built
an insight into the ways in which languages can be crafted to satisfy different design goals. As part of my
larger research vision, I plan to investigate how existing verification languages can be extended to aid proof
maintenance, for example, providing new language features for users to constrain proof search in automated
solvers, or to ways to instruct the solver to explicitly reuse results from previous verification runs.

Conclusion
The past decades of research have brought formal verification to the cusp of mainstream adoption, but a final
barrier to wider appeal still remains: the problem of how to maintain these verified systems as they change. The
three axes of my research direction — automation for changes in implementations, changes in specifications
and non-functional changes — will come together to tackle the problem of proof maintenance for the majority
of programs. As my research shows, verified code has the potential to be easier to write and maintain than
unverified software, and my research goals are to expose that potential to the world. The success of my broader
research agenda will radically shift the balance between verified and unverified software, substantially reducing
the cost of maintaining formal artefacts, and make verification the “obvious” option for software moving forward.
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